砂卵(砾)石层中注浆模拟试验研究

杨 \mathfrak{P}^1 , 唐益群¹, 彭振斌², 陈 安²

(1. 同济大学地下建筑与工程系,上海 200092; 2. 中南大学地学与环境工程学院,湖南 长沙 410083)

摘 要:通过在模拟的砂卵(砾)石层中进行注浆试验,研究分析注浆压力 p、注浆时间 t、浆液水灰比 m、地层渗透 系数 k、孔隙度 n 的单因素和多因素对浆液扩散半径 R、注浆后结石体抗压强度 P 的影响规律及它们之间的相互关系。 试验结果表明: R 随着 p、t、k、m 的增加而增大,影响 R 的显著因素是 p,其次是 k,t和 m;P 随着 p、t、n 的增加 而增大,随着 m 的减小而增加,p 对注浆后 P 有较大的影响,n、t 次之,而 m 则占有明显的优势。利用计算机优化回 归实验数据,得出了它们之间的关系式。

关键词: 砂卵(砾)石; 注浆; 模拟实验; 扩散半径; 抗压强度

中图分类号:TU472.6 **文献标识码**:A **文章编号**:1000-4548(2006)12-2134-05 **作者简介**:杨 坪(1977-),男,四川泸州人,博士,从事注浆工程、地基处理等方面的研究工作。

Study on grouting simulating experiment in sandy gravels

YANG Ping¹, TANG Yi-qun¹, PENG Zhen-bin², CHEN An²

(1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Institute of Geology & Environmental

Engineering, Central South University, Changsha 410083, China)

Abstract: By the grouting simulation test in sandy gravels, the influences of grouting pressure p, grouting time t, water cement ratio m, permeability coefficient k, porosity n upon grout diffusion radius R, concretion strength P and their correlation were analyzed. It was shown that R increased with the increasing of p, t, m and k. Distinct influencing factor on grout diffusion radius R was p and k, but the influences of t and m was small. Strength P of grouted gravels increased with the increasing p, t, n, and decreased with the decreasing of m. By regressing test data with computer, the theoretical relation was educed. **Key words:** sandy gravel; grouting; experiment; grout diffusion radius; compressive strength

0 概 况

1802年 Charles Berigny 把注浆法用于 Dieppe 冲 刷闸的修理之后^[1],注浆技术被引进世界许多国家, 应用范围越来越广。砂卵(砾)石层是第四纪沉积物 中的一种复杂松散粗碎屑堆积层^[2-6],在砂卵(砾)石 地层中注浆,往往要求注入的浆液能形成连续、稳定 的胶结体,这时注浆孔的距离必须依浆液的扩散距离 而定。如何确定浆液的扩散距离和结石体抗压强度是 长期以来尚未解决的技术难题。在目前的注浆设计和 施工中,注浆孔距和结石体抗压强度主要是凭经验确 定的,很可能因孔距太大或太小而出现工程质量问题 或投资上的浪费。笔者认为,浆液的扩散距离和结石 体抗压强度主要取决于介质结构参数、浆液的性质和 注浆的工艺参数。本文通过注浆模拟试验,得出浆液 的扩散距离、结石体抗压强度与其影响因素之间的关 系,以便指导工程实践。

1 试验装置说明

试验装置是结合实际情况自行研制的,由5部分 组成:钢结构架、可移动板和有机玻璃板、振动台、 注浆设备和量测系统。试验装置的外观尺寸为 1670 mm×1230 mm×1023 mm;工作间为(0~1500 mm) ×1220 mm×1000 mm。

钢结构长方体容器工作间由钢结构架、有机玻璃、 可移动板、钢底板组成。工作间的大小可通过调节推 进装置改变,它的宽(1200 mm)和高(1000 mm) 是不变的,长可以在 0~1500 mm 内调节,以满足不 同试件大小的要求;可移动板由推进螺杆和钢板组成; 振动台由四根弹簧和一个偏心振动机组成;注浆设备 包括注浆泵、缓冲器、搅拌桶等;量测系统包括探测

基金项目: 国家自然科学基金资助项目(40372124);湖南省交通厅科 研基金资助项目(200020) **收稿日期:** 2005 - 10 - 13

头、粘度计、压力表等。

试验装置除底板和可移动板用钢板外,均用有机 玻璃,为便于观察,可通过在有机玻璃板外面加钢肋 达到承受注浆压力的要求。除底板外,所有的有机玻 璃板都可拆卸。试验装置如图1所示。

图 1 注浆试验装置 Fig. 1 Grouting test

2 试验材料及试验设计

试验模型主要由砂、卵砾石经过不同的配比组合 而成^[7],经试验台振动密实,模拟砂卵(砾)石层。

注浆材料为普通硅酸盐水泥,标号为[#]425。

试验分两组进行,每组试验模型由不同的砂、卵 (砾)石配比组成7种不同渗透系数k的模拟砂卵(砾) 石层,见表1和2所示。注浆浆液的水灰比m、注浆 压力p也分别选取7个值。试验各因素的取值见表1、 表2所示。

试验设计采用方开泰教授所创的均匀设计法,选用3种因素7个取值的表3和4进行试验设计^[8-9]。

由表4可知,3因素试验应采用表3中第2、3、4

列来安排试验,即将渗透系数(cm/s)、注浆压力(MPa)、 水灰比分别放在表3的后三列来安排试验。试验安排 如表5、6所示。

3 试验工作原理

试验采用静压小循环渗透注浆。工作原理如图 2 所示。

图 2 注浆试验工作原理图

Fig. 2 The principle of experimental grouting

首先按砂、卵(砾)石不同的配比,在注浆试验 台中构造模拟砂卵(砾)石地层,并按照设计预埋注 浆管和探测头。在注浆前测出砂卵(砾)石地层特征 参数,包括地层的孔隙度 n、渗透系数 k、重度 y、含 水率 w、比重 G、和各粒组的含量等。接好注浆管道 及仪表,按设计的浆液配比搅拌好水泥浆,准备注浆。

对模拟砂卵(砾)石层进行渗透注浆^[10],注浆压 力采用试验设计中的定压,可通过安装在注浆管上端 的压力表监测注浆压力。注浆时,先将回浆管阀2开 到最大,即浆液全部流回到浆桶中,再慢慢关小回浆 管阀2,直到压力表达到设计的注浆压力,即可停止 关小回浆管阀2,通过回浆管阀2调节压力的大小, 从而对模型进行注浆。当模型中的探测头探测到浆液 时,报警器发出报警,停止注浆。

Table1 Values of experimental factors in the first set of test									
因	素	1	2	3	4	5	6	7	
地层渗透系数 k/(cm • s⁻¹)		0.098	0.108	0.116	0.141	0.162	0.195	0.234	
注浆压力 p/MPa		0.04	0.08	0.12	0.16	0.20	0.24	0.28	
浆液水灰比 m		0.6	0.8	1.0	1.2	1.4	1.6	1.8	
表 2 第二组试验各因素取值情况表									
Table2 Values of experimental factors in the second set of test									
因	素	1	2	3	4	5	6	7	
地层渗透系数 k/(cm・s ⁻¹)		0.101	0.112	0.118	0.134	0.165	0.203	0.207	
注浆压力 p/MPa		0.06	0.10	0.14	0.18	0.22	0.26	0.30	
浆液水灰比 m		0.5	0.7	0.9	1.1	1.3	1.5	1.7	

表 1 第一组试验各因素取值情况表

表 3 均匀设计表 $U_{7}^{*}(7^{4})$

	Table 3 Table of	uniform design	$U_{7}^{*}(7^{4})$				
试验号	因素1	因素 2	因素 3	因素 4			
1	1 1		5	7			
2	2	6	2	6			
3	3	1	7	5			
4	4	4	4	4			
5	5	7	1	3			
6	6 6 2 7		6	2			
1	/ 表 / 均匀设	<u>,</u> 计表 <i>U</i> [*] (7 ⁴)的伺		1			
	Table 4 Utilization ta	ble of uniform des	$U_{-}^{*}(7^{4})$				
因素个数							
2	1	3		0.1582			
3	2	3	4	0.2132			
	表5 第	一批试验安排表					
	Table 5 Plan	n of the first set of	test				
2474 日		试验因素					
风迎与	渗透系数/(cm•s ⁻¹)	渗透系数/(cm • s ⁻¹) 注浆压力/MPa					
1	1 0.116 (3)).2 (5)	1.8 (7)			
2	2 0.195 (6)		.08 (2)	1.6 (6)			
3	0.098 (1)	0	.28 (7)	1.4 (5)			
4	0.141 (4)	0	.16 (4)	1.2 (4)			
5	0.234 (7)	0.234 (7) 0.0		1.0 (3)			
6	0.108 (2)	0	.24 (6)	0.8 (2)			
7	0.162 (5)	0	.12 (3)	0.6 (1)			
	表6第	二批试验安排表					
	Table 6 Plan	of the second set of	of test				
2474 日		ז	式验因素				
风迎与	渗透系数/(cm•s ⁻¹)	渗透系数/(cm•s ⁻¹) 注浆		水灰比			
8	0.118 (3)	0	.22 (5)	1.7 (7)			
9	9 0.203 (6)		.10 (2)	1.5 (6)			
10	10 0.101 (1)		.30 (7)	1.3 (5)			
11	0.134 (4)	0	.18 (4)	1.1 (4)			
12	0.207 (7)	0	.06 (1)	0.9 (3)			
13	0.112 (2)	0	.26 (6)	0.7 (2)			
14	0.165 (5)	0	.14 (2)	0.5 (5)			

4 试验结果分析

4.1 试验观察分析

注浆时注浆压力由低逐渐升高到设计压力值,在 压力升高过程中,常常出现不稳定状态,一方面是因 为从注浆泵里出来的浆液虽然经过了缓冲器,但其压 力值还是存在一定的波动性,另一方面是因为浆液在 砂卵(砾)石层大孔隙中流动时,时而遇到卵(砾) 石构成的骨架孔隙,时而遇到卵(砾)石与卵(砾) 石接触面缝隙,这样交替出现,导致压力来回波动。

注浆结束一段时间后,取样观察可见,在浆液扩 散到的范围内,浆液充填密实、与卵(砾)石胶结良 好,如图3所示。在浆液胶结范围外,卵(砾)石层 有水浸透,水灰比较大时更为明显,这说明水泥浆液 析水性较强。

图 3 注浆后结石体

Fig. 3 Grouted gravel

被浆液充填、胶结的结石体多呈圆柱体或圆台体。 注浆压力小时,胶结范围明显较小。浆液在各种情况 下扩散都较均匀,充填密实。

4.2 试验数据处理

浆液扩散半径 R、结石体抗压强度 P 的测试数据 如表 7 和 8 所示。

表 7 第一组试验数据统计表

Table 7 Results of the first set of test

试验序号	渗透系数 /(cm・s⁻¹)	注浆压力 /MPa	注浆时间 /s	水灰比	孔隙度 /%	扩散半径 /cm	注浆后强度 /MPa
1	0.116	0.2	220	1.8	31.1	47	2.43
2	0.195	0.08	167	1.6	33.4	35	2.13
3	0.098	0.28	178	1.4	40.2	42	2.47
4	0.141	0.16	175	1.2	37.2	41	5.89
5	0.234	0.04	163	1.0	29.7	28	5.35
6	0.108	0.24	180	0.8	36.9	41	9.97
7	0.162	0.12	172	0.6	39.5	33	11.70

表 8 第二组试验数据统计表

Table 8 Results of the second set of test

试验序号	渗透系数 /(cm•s ⁻¹)	注浆压力 /MPa	注浆时间 /s	水灰比	孔隙度 /%	扩散半径 /cm	注浆后强度 /MPa
8	0.118	0.22	261	1.7	28.8	51	2.43
9	0.203	0.1	169	1.5	31.4	39	2.35
10	0.101	0.3	164	1.3	39.4	43	6.21
11	0.134	0.18	190	1.1	34.5	43	7.12
12	0.207	0.06	160	0.9	38.6	26	6.84
13	0.112	0.26	176	0.7	34.7	42	10.40
14	0.165	0.14	170	0.5	33.5	36	12.30

根据表 7 和 8 中的测试数据,进行注浆压力 p、注浆时间 t、水灰比 m、渗透系数 k、孔隙度 n 等因素对浆液扩散半径 R 和注浆后的结石体抗压强度 P 的影响规律的计算机优化回归^[11-14],得到下面关系式:

扩散半径 R 与水灰比 m、渗透系数 k、注浆压力 p、注浆时间 t 之间的关系为

$$R = 19.953 \cdot m^{0.121} \cdot k^{0.429} \cdot p^{0.412} \cdot t^{0.437} ,$$

$$b_{\rm m} = 0.258, \ b_{\rm k} = 0.666, \ b_{\rm p} = 1.338,$$

$$b_{\rm t} = 0.309, \ r = 0.971 \ .$$
(1)

式中 R 为浆液的扩散半径 (cm); m 为水灰比; k 为渗透系数(cm/s); p 为注浆压力 (MPa); t 为注浆时 间 (s); b_m 、 b_k 、 b_p 、 b_t 分别为浆液的扩散半径 R 对水灰比m、渗透系数k、注浆压力p、注浆时间t的 标准回归系数,该系数越大,所对应的因素对扩散半 径 R 的影响就越大; r 为复相关系数。

注浆后的抗压强度 *P* 与地层孔隙度 *n*、水灰比 *m*、 注浆压力 *p*、注浆时间 *t* 之间的关系为

$$P = 0.984 \cdot n^{0.517} \cdot m^{-1.488} \cdot p^{0.118} \cdot t^{0.031}$$

$$b_{\rm m} = 0.905, \ b_{\rm k} = 0.086, \ b_{\rm p} = 0.109,$$

$$b_{\rm s} = 0.006, \ r = 0.934 \quad .$$
(2)

式中 P为注浆后地层的抗压强度 (MPa); n为地层的孔隙度 (%); b_n 为注浆后结石体抗压强度 P对地层孔隙度 n的标准回归系数,其余符号意义同前。

由式(2)可知: 注浆压力对结石体的抗压强度有 较大的影响, 地层孔隙度次之, 注浆时间最小, 而水 灰比则占有明显的优势。

因为渗透注浆是在不改变原状砂卵(砾)石层的

结构和体积情况下,浆液充填砂卵(砾)石层的孔隙, 排挤出孔隙中存在的自由水和气体,所用的灌浆压力 *p*_x相对较小,即

$$p_{\mathfrak{F}} = p + \gamma_{\mathrm{w}} h_{\mathrm{w}} \quad , \tag{3}$$

且必须满足灌浆压力 p_{y} <地层的起劈压力 p_{0} ,因此 说浆液的最大扩散半径是由地层本身结构决定的。

$$p_{0} = \frac{\left(\gamma h - \gamma_{w} h_{w}\right)\left(1+k\right)}{2} - \frac{\left(\gamma h - \gamma_{w} h_{w}\right)\left(1-k\right)}{2\sin\varphi} + \frac{c\cdot\cot\varphi}{2} \cdot \cot\varphi \quad (4)$$

式中 p_{g} 为实际注浆压力 (kPa); φ 为有效内摩擦 角; c为有效粘聚力 (kPa); γ 为砂卵 (砾)石的重 度 (kN/m³); γ_{w} 为水的重度 (kN/m³); h为注浆段 深度 (m); h_{w} 为注浆点地下水位高度 (m); k为主 应力比。

5 结 论

(1)浆液的扩散半径随着注浆压力、渗透系数、 注浆时间、水灰比的增加而随之增大。从式(1)中可见,影响扩散半径最显著的因素是注浆压力,其次是 地层的渗透系数和注浆时间,浆液的水灰比对浆液的 扩散半径影响相对较小。

(2)浆液在砂卵(砾)石层中的最大扩散距离是 由地层本身结构决定的。当地层条件一定时,浆液的 扩散距离主要与浆液的性质和注浆的工艺参数有关。

(3) 注浆后结石体抗压强度随着注浆压力、地层 孔隙比、注浆时间的增加而增大,随着浆液水灰比的 减小而增加。从式(2)中可见,注浆压力对结石体的 强度有较大的影响,地层孔隙度次之,注浆时间对结 石体的强度影响很小,而水灰比则占有明显的优势。

(4)结石体抗压强度 P、浆液扩散半径 R 是反映 注浆效果的重要指标。二者都受到注浆介质结构(孔 隙度 n、渗透系数 k)、注浆压力 p、注浆时间 t、水灰 比 m 等不同程度的影响,其中水灰比 m 对浆液扩散半 径 R 影响较小,但对结石体抗压强度 P 影响较大;注 浆压力 p 和注浆时间 t 对浆液扩散半径 R 影响较大, 但对结石抗压强度 P 影响较小;介质结构(孔隙度 n、 渗透系数 k)除对浆液扩散半径 R 影响较大外,对结 石体抗压强度 P 较小。

本文得出的浆液扩散半径 R、结石体抗压强度 P 与注浆介质结构(渗透系数 k、孔隙度 n)、注浆压力 p、注浆时间 t、水灰比 m 等因素的相关规律,对指导 注浆工程的设计和注浆效果预测等有现实意义。

参考文献:

- [1] 程 晓,张凤祥. 土建注浆施工与效果检测[M]. 上海:同 济大学出版社, 1998: 1. (CHEN Xiao, ZHANG Feng-xiang. Construct and effect inspect of grouting in engineering[M]. Shanghai: Tongji University Press, 1998: 1.)
- [2] KIM J W, CHOUGH S K. A gravel lobe deposit in the prodelta of the Doumsan Fan Delta (Miocene), SE Korea[J]. Sedimentary Geology, 2000,130:183 - 203.
- [3] VINCENT Peter, SADAH Ahmad. Fabric analyses of some saudi arabian pediment gravels[J]. Journal of Arid Environments, 1995, 30: 371 - 384.
- [4] 周秉根,李典友.黄山不同类型砾石特性及成因分析[J]. 安微师范大学学报(自然科学版), 2000,23(1): 57 60.
 (ZHOU Bing-gen, LI Dian-you. An analysis on the characteristics and formation of the different gravels in Mountain Huangshan[J]. Journal of Anhui Normal University (Natural Science), 2000,23(1): 57 60.)
- [5] BROCHIER Jacques élie, LIVACHE Michel. An original anthropic sedimentary deposit from vauclusian mesolithic sites: the black earth with small alluvial gravels[J]. L'anthropologie, 2003, 107: 153 - 165.
- [6] 姜志伟. 对皖南山区第四纪冲积相砾(卵)石层的工程地质

性质的认识[J]. 安徽建筑,2002,6: 78 - 79. (JIANG Zhi-wei. Understand engineering geologic character of fourth age diluvial gravels in south Anhui[J]. Anhui Architecture, 2002,6:78 - 79.)

- [7] FRANSSON A. Characterisation of a fractured rock mass for a grouting field test[J]. Tunnelling and Underground Space Technology, 2001,16:331 – 339.
- [8] 方开泰. 均匀设计与均匀设计表[M]. 北京: 科学出版社,
 1994: 69. (FANG Kai-tai. Uniform design and uniform design table[M]. Beijing: Science Press, 1994: 69.)
- [9] 梅松华,盛 谦,冯夏庭. 均匀设计在岩土工程中的应用
 [J]. 岩石力学与工程学报, 2004, 23(16): 2694 2697. (Mei Song-hua, SHENG Qian, FENG Xia-ting. Application of uniform design to geotechnical engineering[J].Chinese Journal of Rock Mechanics and Engineering, 2004, 23(16): 2694 2697.)
- [10] 彭振斌. 注浆工程设计计算与施工[M].武汉:中国地质大学出版社, 1997: 2 11. (PENG Zhen-bin. Design, calculation and construction of grouting engineering[M]. Wuhan: China University of Geosciences Press, 1997: 2 11.)
- [11] 何少华,文竹青. 试验设计与数据处理[M]. 长沙: 国防科技大学出版社, 2002: 174 186. (HE Shao-hua, WEN Zhu-qing. Experimental design and data processing[M]. Changsha: National University of Defense Technology Press, 2002: 174 186.)
- [12] LEE J S, BANG C S, MOK Y J, et al. Numerical and experimental analysis of penetration grouting in jointed rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2000,37:1027 - 1037.
- [13] PICHLER B, LACKNER R, MANG H A. Back analysis of model parameters in geotechnical engineering by means of soft computing[J]. International Journal for Numerical Methods in Engineering, 2003, 57: 1943 - 1978.
- [14] ERIKSSON M, STILLE H, ANDERSSON J. Numerical calculations for prediction of grout spread with account of filtration and varying aperture[J]. Tunnelling and Underground Space Technology, 2000,15(4):353 - 364.