建筑结构学报 JOURNAL OF BUILDING STRUCTURES 建筑结构学报 Journal of Building Structures ISSN 1000-6869,CN 11-1931/TU

《建筑结构学报》网络首发论文

题目:	配置 600 MPa 高强钢筋混凝土梁变形的试验及计算方法
作者:	管俊峰,刘霖艾,张谦,白卫峰,姚贤华,赵顺波
DOI:	10.14006/j.jzjgxb.2017.0852
收稿日期:	2017年12月
网络首发日期:	2019-07-15
引用格式:	管俊峰,刘霖艾,张谦,白卫峰,姚贤华,赵顺波. 配置 600 MPa 高强钢筋
	混凝土梁变形的试验及计算方法.建筑结构学报.
	https://doi.org/10.14006/j.jzjgxb.2017.0852

网络首发:在编辑部工作流程中,稿件从录用到出版要经历录用定稿、排版定稿、整期汇编定稿等阶 段。录用定稿指内容已经确定,且通过同行评议、主编终审同意刊用的稿件。排版定稿指录用定稿按照期 刊特定版式(包括网络呈现版式)排版后的稿件,可暂不确定出版年、卷、期和页码。整期汇编定稿指出 版年、卷、期、页码均已确定的印刷或数字出版的整期汇编稿件。录用定稿网络首发稿件内容必须符合《出 版管理条例》和《期刊出版管理规定》的有关规定;学术研究成果具有创新性、科学性和先进性,符合编 辑部对刊文的录用要求,不存在学术不端行为及其他侵权行为;稿件内容应基本符合国家有关书刊编辑、 出版的技术标准,正确使用和统一规范语言文字、符号、数字、外文字母、法定计量单位及地图标注等。 为确保录用定稿网络首发的严肃性,录用定稿一经发布,不得修改论文题目、作者、机构名称和学术内容, 只可基于编辑规范进行少量文字的修改。

出版确认:纸质期刊编辑部通过与《中国学术期刊(光盘版)》电子杂志社有限公司签约,在《中国 学术期刊(网络版)》出版传播平台上创办与纸质期刊内容一致的网络版,以单篇或整期出版形式,在印刷 出版之前刊发论文的录用定稿、排版定稿、整期汇编定稿。因为《中国学术期刊(网络版)》是国家新闻出 版广电总局批准的网络连续型出版物(ISSN 2096-4188, CN 11-6037/Z),所以签约期刊的网络版上网络首 发论文视为正式出版。 建筑结构学报 Journal of Building Structures

配置 600 MPa 高强钢筋混凝土梁变形的试验及计算方法

管俊峰¹ 刘霖艾¹ 张谦^{1,2} 白卫峰¹ 姚贤华¹ 赵顺波¹ (1.华北水利水电大学 土木与交通学院,河南 郑州,450045; 2. 青海大学 土木工程学院,青海 西宁,810016)

摘 要: 研究配置 600 MPa 级高强钢筋混凝土梁的变形特性及其计算方法。通过配置 600 MPa 级高强钢筋及 C40、 C50、C60 不同混凝土强度等级的 6 组 12 根受弯梁的试验,确定出正常使用阶段各级荷载下的截面高度方向混凝土 应变与纵向受力钢筋应变的变化情况、荷载—变形全过程曲线等。试验结果表明: 配置 600 MPa 级高强钢筋的混凝 土梁混凝土的应变变化符合平截面假定,荷载—变形全曲线为三折线变化。进一步,基于分别配置 335 MPa、400 MPa、 500 MPa 钢筋的混凝土梁的变形试验结果的详细分析,并结合本文试验研究,对现有国内外规范钢筋混凝土梁变形计 算公式的适用性进行了系统比较分析,最终建立了适用于配置不同强度钢筋(335 MPa 至 600 MPa)及不同强度混凝土 (C40 至 C60)梁变形的统一计算方法。

关键词:钢筋混凝土梁;600 MPa 高强钢筋;混凝土强度等级;变形;计算方法 中图分类号:TU375 文献标识码:A

Experiment and Calculation Method of Deformation of RC Beams with 600MPa Steel bars

GUAN Junfeng¹ LIU Linai¹ ZHANG Qian^{1,2} BAI Weifeng¹ YAO Xianhua¹ ZHAO Shunbo¹ (1.School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Henan Zhengzhou 450045 China; 2. School of Civil Engineering, Qinghai University, Qinghai Xining 810016)

Abstract: The twelve reinforced concrete (RC) beams with 600 MPa steel bars and different concrete strength grade (C40, C50, and C60) were tested to study the characteristics of deformation and establish associated calculation method. The strain variation of concrete along the depth direction and that of longitudinal tensile steel bars, and the complete load-deformation curves of RC beams with 600MPa steel bars, in the normal service stage, were experimentally obtained. The experimental results show that, the strain distribution of concrete of RC beams with 600 MPa steel bars can meet plane section assumption, these load-deformation curves are shown as a triangular line. Furthermore, based on the deeply analysis on experimental results of RC beams with 335MPa, 400MPa, and 500MPa steel bars, and this study on RC beams with 600 MPa steel bar, the applicability of the existing formulas from domestic and foreign codes for RC beams were systematically analyzed. And these uniform models for checking computations of RC beams deformation were proposed. The result of comparing show that the proposed formulas are better with the test data and suitable for these RC beams with different steel bars (from 335MPa to 600MPa) and different concrete strength (from C40 to C60).

Key words: reinforced concrete (RC) beams; 600MPa steel bar; concrete strength grade; deformation; calculation method

0 引 言

当前,国内桥梁公路^[1]、铁路桥涵^[2]、土木建 筑^[3]、水利^[4,5]与港口^[6]等结构中,所用的普通纵

向受拉钢筋最高级别为 500 MPa 级。而 600 MPa

级新型高强钢筋作为节材节能环保产品,在工程中大力推广应用,对推动建筑业结构调整与转型升级具有重大意义。对于配置600 MPa级别高强钢筋的混凝土试件受力性能的研究,国内还处于起步阶段^[7,8]。管俊峰等^[7]开展了600 MPa级钢筋的力学性能的试验,其研究表明

作者简介: 管俊峰(1980—), 男, 工学博士, 教授, E-mail: shuaipipi88@126.com 通信作者: 张谦(1978—), 男, 工学博士, 副教授, E-mail: phoenix1012@126.com 收稿日期: 2017 年 12 月

基金项目:国家自然科学基金项目(51779095,51679092),青海省基础研究计划项目(2017-ZJ-766,郑州市科技攻关项目(153PKJGG111), 华北水利水电大学研究生创新项目(YK2017-17)

600 MPa 级钢筋具有明显的屈服台阶, 屈服强度 平均值为 638.59 MPa, 极限抗拉强度平均值为 826.01 MPa, 断后伸长率都在 20%左右, 最大力 总伸长率 Agt 都大于 9%。其^[8]进一步开展了配置 600 MPa 级钢筋混凝土梁的抗裂性能研究, 建立 了适用于配置 600 MPa 钢筋的混凝土梁的抗裂度 计算的修正公式。鉴于钢筋混凝土构件与结构的 变形控制一直是工程界的热点问题^[9,10], 因此, 尽快开展配置 600 MPa 级高强钢筋的混凝土构件 与结构的受力性能及计算方法的研究, 就具有重 要的科研和工程意义。

由此,本文通过6组12根配置600 MPa级 高强钢筋不同强度等级混凝土的受弯梁的试验, 研究了混凝土强度变化对配置600 MPa钢筋混凝 土梁在正常使用阶段变形性能的影响规律。基于 试验结果,结合配置335 MPa、400 MPa、500 MPa 钢筋混凝土梁的试验成果的详细分析,对钢筋混 凝土梁变形验算的统一模式进行了探讨,提出了 改进的钢筋混凝土梁变形计算模式,并与本文试 验实测结果及其他学者的试验结果进行了比较。 分别配置 C40、C50、C60 强度等级的混凝 土拌合物来浇筑试验试件。采用饮用水拌合; 细骨料采用表观密度为 2700 kg/m³的机制砂; 组骨料为表观密度为 2710 kg/m³的天然石子, 粒径 5~10 mm: 10~16 mm: 16~20 mm=4.5:3.0:2.5; 对应的紧密堆积密度为 1630.4 kg/m³; C40 混凝土采用 42.5 硅酸盐水泥(密度 3043kg/m³), C50、C60 混凝土采用 52.5 硅酸盐 水泥(密度 3244 kg/m³); 拌合时加入高效减水 剂; 混凝土拌合物塌落度控制在 120~200 mm 范围内。

表1给出了本次6组12根配置600 MPa高 强钢筋的混凝土梁的设计信息:C40、C50、C60 各对应两种配筋率 ρ (=0.008、0.005),每种配筋 率对应制作2根试件。各个试验梁的具体截面 尺寸(表1中b为截面宽度;h为截面高度;lo 为梁的有效跨度;c为保护层厚度)与配筋(表1 中 ρ 为配筋率),以及实测的纵向受力钢筋(表 1中d为直径,n为根数;fy为屈服强度;Es为 弹性模量)与混凝土(表1中fcu为立方体抗压强 度,fc为轴心抗压强度;fi为抗拉强度;Ec为弹 性模量)的材料性能见表1。

试验涩				// /		纵[纵向受力钢筋				混凝土		
编呈	<i>b</i> /mm	<i>h</i> /mm	lo/mm	c/mm	ho/100%	nd	f_{y}	$E_{\rm s}$	f_{cu}	$f_{\rm c}$	$f_{\rm t}$	$E_{\rm c} \times 10^4$	
5月11 5			$\langle \langle $	$ \land $	$\langle \rangle \rangle$	na	/MPa	/GPa	/MPa	/MPa	/MPa	/MPa	
600-C40-1-1	200	350	2550	30	0.008	2ф18	645.0	1.95	42.6	32.2	2.7	3.7	
600-C40-1-2	200	350	2550	30	0.008	2ф18	645.0	1.95	42.6	32.2	2.7	3.7	
600-C40-2-1	200	350	2550	30	0.005	2ф14	635.7	1.98	42.6	32.2	2.7	3.7	
600-C40-2-2	200	350	2550	30	0.005	2ф14	635.7	1.98	42.6	32.2	2.7	3.7	
600-C50-1-1	200	350	2550	30	0.008	2ф18	645.0	1.95	53.0	33.3	3.4	3.7	
600-C50-1-2	200	350	2550	30	0.008	2ф18	645.0	1.95	53.0	33.3	3.4	3.7	
600-C50-2-1 «	200	350	2550	30	0.005	2ф14	635.7	1.98	53.0	33.3	3.4	3.7	
600-C50-2-2	200	350	2550	30	0.005	2ф14	635.7	1.98	53.0	33.3	3.4	3.7	
600-C60-1-1	200	350	2550	30	0.008	2ф18	645.0	1.95	67.1	62.3	3.4	4.1	
600-C60-1-2	200	350	2550	30	0.008	2ф18	645.0	1.95	67.1	62.3	3.4	4.1	
600-C60-2-1	200	350	2550	30	0.005	2ф14	635.7	1.98	66.3	61.8	3.4	4.1	
600-C60-2-2	200	350	2550	30	0.005	2ф14	635.7	1.98	66.3	61.8	3.4	4.1	

1	试验概况

以设计控制弯矩为参照施加各级荷载,在跨 中采用两点对称集中加荷,形成受力纯弯段。考 虑梁自重和加载设备的影响,按照混凝土静载加 载方法进行,各级荷载值通过与传感器相连的数 据采集系统的读数控制。通过在试验梁跨中、支 座等位置布置位移计,记录各级荷载下的试验梁 跨中与支座等处变形量。通过应变片结合手持式 应变仪,量测各级荷载作用下梁截面高度方向的 应变变化情况。通过纯弯段内纵向受力钢筋不同 位置处预埋钢筋应变片,记录各级荷载下的钢筋 应变变化情况。

表1 试验梁的截面尺寸与配筋及实测的材料性能 Tab. 1 Size and reinforcement and material properties of tested beams 纵向受力钢筋

2 试验结果分析

2.1 平截面假定验证

试验结果发现:本文所用的配置 600 MPa 高强钢筋的试验梁都为适筋破坏,开裂及开裂后 裂缝发展与分布与学者进行的配置 335 MPa、 400 MPa、500 MPa 钢筋的混凝土受弯梁的规律 相似,相关研究结果另行撰文阐述。

图 1 为配置 600 MPa 高强钢筋的各组试验 梁各级荷载作用下的实测混凝土应变沿跨中截 面高度方向的分布图 (图 1 中 *M*u为试验梁的极 限弯矩,为实际钢筋屈服时对应的弯矩)。

mid span of test beams

由图 1 可见, 配置 600 MPa 级钢筋与不同 强度混凝土的受弯梁,在正常使用阶段各级荷载 作用下,其截面应变仍然较好地符合平截面假 定。

2.2 荷载—变形全曲线

图 2 为配置 600 MPa 钢筋试件的实测荷 载—变形全过程曲线(弯矩 *M*—变形 *f* 全曲线)。

图 2 配置 600 MPa 钢筋的混凝土梁荷载-变形全曲线 Fig. 2 Load-deformation curves for concrete beams with 600 MPa steel bars

如图2(a)和图2(b)所示,对于配置600 MPa 钢筋混凝土试件的变形,呈现适筋梁典型的三阶 段模式。各试件表现出明显的延性破坏特征。未 开裂前,试件的变形呈线性增加。当外荷载达到 开裂弯矩*M*cr (20%~30%*M*u),梁纯弯段内出现 一条或几条初始裂缝,变形全曲线有明显的突变 点,曲线斜率开始发生改变。随着荷载进一步增 加,梁受拉区的600 MPa纵向受力钢筋达到其屈 服强度时,试件变形发生突增,荷载—变形曲线 上出现第2个更为明显的拐点,曲线斜率变化较 大,试件刚度降低明显。当荷载进一步增加,最 终受压区混凝土压碎而试验梁失去承载能力。

如图2所示的适筋范围内:当配筋率相同时, 随着混凝土强度等级增加,其试件的承载力有增 加的趋势(图2(a)和图2(b));当混凝土强度等级相 同时,随着配筋率增加,其相应试件的承载力呈 现增加的趋势(图2(c));配筋率增加后,其试件 的延性有降低的趋势(图2(c))。

2.3 实测裂缝截面处钢筋应力

本次试验采用在纵向受力钢筋上粘贴一定 数量应变片来量测裂缝截面的钢筋应变变化。由 于各试件纯弯段的裂缝为随机出现,并不能保证 每条裂缝都恰好穿过预设的钢筋应变片,因而只 有部分试验梁测得裂缝截面处的钢筋应变。

图3与表2为实测裂缝截面处钢筋应力值(由 实测钢筋应变与实测钢筋弹模得到)与规范计算 值的比较结果。

Fig.3 Comparison of measured steel stresses at crack section with calculated values

表 2 裂缝处钢筋应力实测值与计算值的比较结果 Tab.2 Compared results for measured steel stresses at section of crack and calculated values

	始日	测点	GB 500	10-2010	ACI 3	18-14
	姍亏	/n	μ	δ	μ	δ
6	500-C40-1-1	10	0.965	0.025	1.016	0.025
6	500-C40-2-2	12	0.978	0.021	1.047	0.021
6	500-C50-1-1	12	1.081	0.034	1.138	0.034
6	500-C50-1-2	8	1.037	0.083	1.091	0.083
6	500-C50-2-1	7	1.175	0.013	1.258	0.013
6	500-C60-2-1	9	1.046	0.027	1.123	0.027
	总计	58	1.040	0.074	1.104	0.076

我国混凝土结构设计规范GB 50010-2010 中,裂缝截面处的钢筋应力计算公式为^[3]:

$$\sigma_s = \frac{M}{A_s \eta h_0} \tag{1}$$

式中,M为试件各级荷载下的弯矩值; A_s 为纵向 受拉钢筋面积; η 为开裂截面处的内力臂系数, GB 50010规范中 η =0.87; h_0 为试件截面的有效高 度。裂缝截面钢筋应力实测值与GB 50010规范 计算值的比较结果见表2,其整体上的试验值与 计算值比值的平均值 μ =1.040,离散系数 δ =0.074, 吻合良好。 美国 ACI 318-14 规范中,裂缝截面处的钢 筋应力计算公式为^[11]:

$$\sigma_s = \frac{\alpha_{\rm E} M (h_0 - x_{\rm cr})}{I_{\rm cr}} \tag{2}$$

式中, α_E 为钢筋与混凝土弹性模量比; x_{cr} 开裂 截面处受压区混凝土高度; I_{cr} 为开裂截面惯性 矩。裂缝截面钢筋应力实测值与ACI 318 规范计 算值的比较结果见表 2,其整体上的平均值 $\mu=1.104$,离散系数 $\delta=0.076$,整体计算值略小。

基于实测钢筋应力与 GB50010 规范计算模 式,可反解出对应的实测内力臂系数 $\eta=M/(\sigma_sA_sh_0)$ 。如图4所示,各试验梁 $M/M_u=0.2-0.8$ 范围内,内力臂系数最大值为 0.93,最小值为0.73,平均值为0.83。其平均值 与GB规范的内力臂系数 $\eta=0.87$ 较为接近。

Fig.4 Relationship between η and M

3 现行各规范计算方法适用性分析

3.1 纵向受力钢筋 335MPa

Tab.3 Details of beams with 335MPa steel bars 纵向受力钢筋 混凝土 数据来源 b/mm h/mm l_0/mm c/mm $\rho/100\%$ fy/MPa Es/GPa fcu/MPa ft/MPa $E_{\rm c} \times 10^4$ /MPa 课题组 128-245-1435-20-0.004-366.7-1.9-39.0-2.6-3.2-试验 250 1460 8700 70 0.02 409.4 2.0 50.7 3.7 3.4 85 设计规范 99-2100-7-0.005-19.3-2.0-20-1.7-0.8-220 500 5000 40 0.05 2.2 59.2 3.0 3.7 背景数据

表3 配置335MPa钢筋混凝土梁试件信息 Tab.3 Details of beams with 335MPa steel bars

表4	配置335MPa钢筋混凝土梁变形试验值与不同规范计算值的比较结果

Tab	. 4 Comparison	experimer	ntal defor	mations y	with calo	culated v	alues by	differen	t codes f	or beam	s with 3	35MPa s	steel bars
_	粉据本源	数据点	GB 500	10-2010	SL 19	1-2008	JTG De	52-2012	ACI 3	18-14	EN19	92-1-1	_
	刻1后不仍	/n	μ	δ	μ	δ	μ	δ	μ	δ	μ	δ	
-	课题组试验	132	1.103	0.130	1.029	0.150	0.910	0.179	0.976	0.155	0.937	0.172	-
	规范背景数据	96	0.981	0.108	0.972	0.115	0.998	0.142	1.000	0.139	1.008	0.139	
_	总试件	228	1.052	0.136	1.005	0.140	0.947	0.169	0.986	0.149	0.967	0.162	_

本课题组进行了 28 根配置 335 MPa 钢筋的 混凝土梁的变形试验,实测了开裂后(0.4-0.8) M_u 范围内的挠度值。其试件相关信息见表 3。85 年 GB50010 设计规范背景资料^[9]中给出的 96 根 配置 335 MPa 钢筋的混凝土梁的信息也列入表 3。由表 3 可见,所用分析试验数据的涵盖范围 较广:试件截面高度 h=99 mm-1460 mm;配筋 率 $\rho=0.004-0.05$;保护层厚度 c=7-70 mm;混凝 土强度 $f_{cu}=19.3-59.2$ MPa。共计 228 个数据点。

配置 335 MPa 钢筋的试验梁,其开裂后的 变形试验值 *f*_m 与采用规范—GB 50010-2010、 SL/T 191-2008、JTG D62-2012、美国 ACI 318-14^[11]、欧洲 EN 1992-1-1: 2004^[12]等的计算 值 *f*_{cal} 的比较结果见表 4 与图 5。计算挠度取用 短期刚度,GB 50010、SL/T 191、JTG D62、ACI 318、EN 1992-1-1 等变形计算方法详见各规范的 条文说明。由表 4 与图 5 可见,各规范对于配置 335 MPa 钢筋的试验梁变形的计算都具有较好 的精度。

图 5 配置 335MPa 梁变形试验值与规范计算值的比较 Fig.5 Comparison experimental values with calculated values by codes for deformation of beams with 335MPa steel bars

3.2 纵向受力钢筋 400MPa

文献[13]-文献[15]进行了配置400 MPa 钢筋 的混凝土梁的变形试验,试件相关信息见表5。 试件截面高度 h=304 mm-400 mm;配筋率 $\rho=0.005-0.014$;保护层厚度 c=20-40 mm;混凝 土强 $f_{cu}=15.5\sim44.6$ MPa。共计75 个数据点。

表5	配置400	MPa钢筋	j混凝土夠	梁试件信 /	息
Tab.5 l	Details of	beams wi	ith 400 N	IPa steel	bars

	h	h			0	纵向受	力钢筋				
数据来源	/mm	/mm	/mm	/mm	μ /100%	fy/	*Es/	fcu/	fc/	ft/	$*E_{c} \times 10^{4}$
	/111111	/11111	/11111	/111111	/100/0	MPa	GPa	MPa	MPa	MPa	/MPa
立計 12	200	400	2100	25	0.006-	447-	2.0	15.5-	11.8-	1.8-	2.3-
又献 13	200	400	2100	23	0.009	483	2.0	23.5	17.9	2.3	2.7
文書 14	200	400	3300-		0.009-	450-	2.0	22.2-	14.9-	1.2-	2.7-
又\\\ 14	200	400	4300		0.014	485	2.0	33.5	22.4	1.5	3.1
文献 15	149-	304-	1000	20.40	0.005-	458-	2.0	40.9-	27.4-	2.4-	3.3-
	153	305	1800	20-40	0.013	504	2.0	44.6	29.9*	2.5*	3.4
		1. 1.1. mat		-							

*文献未给出,本文计算取 Es=2.0GPa, Ec=10⁵/(2.2+34.7/fcu), fc=0.76fcu, ft=0.395fcu^{0.55}

配置 400 MPa 钢筋的试验梁正常使用阶段 变形试验值 fm 与国内外规范计算值 fcal 的比较结 果见表 6 与图 6。

可见,各规范对于配置 400 MPa 钢筋的试 验 梁 变 形 的 计 算 都 具 有 一 定 的 精 度 (μ =1.177-1.227, δ =0.203-0.242)。

基金项目:国家自然科学基金项目(51779095,51679092),青海省基础研究计划项目(2017-ZJ-766,郑州市科技攻关项目(153PKJGG111), 华北水利水电大学研究生创新项目(YK2017-17)

作者简介: 管俊峰(1980-), 男, 工学博士, 教授, E-mail: shuaipipi88@126.com

通信作者:张谦(1978-),男,工学博士,副教授,E-mail: phoenix1012@126.com 收稿日期: 2017 年 12 月

Tab.6	Comparison	n experim	ental defe	ormation	s with ca	lculated	l values b	y differe	ent codes	s for bea	ms with	400 MP
-	粉捉立酒	数据点	GB 500	10-2010	SL 19	1-2008	JTG De	52-2012	ACI 3	18-14	EN19	92-1-1
	致 循木你	/n	μ	δ	μ	δ	μ	δ	μ	δ	μ	δ
-	文献 13	20	1.365	0.081	1.310	0.216	1.329	0.123	1.266	0.157	1.265	0.171
	文献 14	27	0.914	0.066	0.994	0.104	0.980	0.067	0.971	0.068	0.975	0.068
	文献 15	28	1.459	0.174	1.373	0.159	1.416	0.176	1.338	0.163	1.327	0.179
	总试件	75	1.226	0.242	1.212	0.221	1.227	0.216	1.179	0.203	1.177	0.209
_	²⁵ GF	3 50010		/				²⁵ SL/T	191		/	

表6 配置400 MPa钢筋混凝土梁变形试验值与不同规范计算值的比较结果 a experimental deformations with calculated values by different codes for beam<u>s with 400 MP</u>a steel bars

图 6 配置 400 MPa 梁变形试验值与规范计算值的比较 Fig.6 Comparison experimental values with calculated values by codes for deformation of beams with 400 MPa steel bars

3.3 纵向受力钢筋 500 MPa

文献[16]-文献[23]进行了配置 500 MPa 钢筋 的混凝土梁的变形试验,试件相关信息见表 7。 试件截面高度 h=298 mm-410 mm;配筋率 $\rho=0.002-0.03$;保护层厚度 c=16-40 mm;混凝土 强度 $f_{cu}=21-75$ MPa。共计 147 个数据点。

表 7	配置 500	MPa 钢筋	防混凝土率	除试件信息
Tab.	7 Details	of beams	with 500	MPa steel

		V									
	h	1.	1.			纵向受	力钢筋		混凑	誕土	
数据来源	0 /mm	/mm	10 /mm	C /mm	р /100%	$f_{ m y}$	E_{s}	$f_{ m cu}$	f_{c}	$f_{\rm t}$	$*E_{c} \times 10^{4}$
	/111111	/111111	/111111	/11111	/100/0	/ MPa	/GPa	/ MPa	/ MPa	/ MPa	/ MPa
立計 16	200	400	2200		0.008-	503-	2.1	43.4-	27.3-	2.7-	3.3-
又\10	200	400	5200		0.02	568	2.1	56.2	34.3	3.0	3.6
立計 17	200	395-	2200	25	0.004-	515-	2.1	23.3-	15.6-	2.0-	2.7-
又\\\ 17	200	410	5200	23	0.01	567	2.1	40.7	27.2	2.7	3.3
立計 10	250	400	2600	25	0.007-	495-	2.0*		22.7-	2.2-	3.1-
又\10	C開入18 250 400 5600 25 (0.01	550	2.0**		36.2	2.8	3.3			
立計10	200-	400-	2000		0.008-	512-	2.0*	54.7-	36.6-	3.6-	3.5-
又\19	214	403	3000		0.01	513	2.0**	75.0	50.2	4.3	3.8
立 赤 20	199-	400	2200		0.008-	503-	2.0*	41.3-	27.3-	2.7-	3.3-
又\\ 20	204	400	5200		0.02	567	2.0**	53.5	34.3	3.0	3.5
文計 21	198-	400-	2200		0.006-	505-	2.0*	21.0-	14.1-	1.0	2.6-
又\\\\ 21	204	405	5200		0.013	550	2.0	22.1	14.8	1.9	2.7
文計つつ	148-	301-	2000	16.05	0.002-	502-	2.0*	28.0-	18.7-	2.5-	2.9-
又歌 22	153	315	2800	10-25	0.028	540	∠.0*	52.1	34.9*	3.5*	3.5
文献 23	149-	298-	2348-	25-40	0.005-	539-	2.0*	33.7-	22.5-	2.1-	3.1-

		154	305	2355	0.015	583	36.6	24.5	2.2	3.2	
*5	文献未给出,	本文计会	算取 Es=	2.0GPa, 1	$E_c = 10^{5}/(2.2 + 34.7/f_{cu}),$	fc=0.76fcu,	$f_t=0.395 f_{cu}^{0.55}$				

配置 500 MPa 钢筋的试验梁,其开裂后正

常

使用阶段的变形试验值 fm 与采用现有国内外规 范计算值 fcal 的比较结果见表 8 与图 7。

表 8 配置 500 MPa 钢筋混凝土梁变形试验值与不同规范计算值的比较结果
Tab.8 Co MParison experimental deformations with calculated values by different codes for beams with 500 MP

	steel												
数据来源	数据点	GB 500	10-2010	SL 19	1-2008	JTG De	52-2012	ACI 3	18-14	EN19	92-1-1		
	/n	μ	δ	μ	δ	μ	δ	μ	δ	μ	δ		
文献 16	20	1.282	0.115	1.123	0.184	1.214	0.139	1.151	0.158	1.164	0.160		
文献 17	22	1.306	0.154	1.262	0.259	1.237	0.150	1.103	0.153	1.086	0.157		
文献 18	11	1.007	0.066	1.191	0.157	1.006	0.097	0.990	0.115	0.994	0.123		
文献 19	3	1.321	0.025	1.406	0.015	1.282	0.038	1.238	0.068	1.249	0.070		
文献 20	23	1.066	0.106	1.088	0.138	1.060	0.147	1.017	0.164	1.025	0.165		
文献 21	10	1.028	0.133	1.031	0.050	1.041	0.108	1.006	0.107	1.016	0.110		
文献 22	46	1.404	0.137	1.554	0.260	1.472	0.143	1.510	0.193	1.495	0.166		
文献 23	12	1.052	0.100	1.058	0.190	1.036	0.141	1.000	0.161	1.000	0.172		
总试件	147	1.226	0.179	1.259	0.277	1.218	0.193	1.191	0.244	1.191	0.235		

图 7 配置 500 MPa 梁变形试验值与规范计算值的比较 Fig.7 Co MParison experimental values with calculated values by codes for deformation of beams with 500 MPa steel bars

3.4 纵向受力钢筋 600 MPa

本文进行的配置 600 MPa 钢筋的试验梁, 其开裂后(0.2-0.8) M_u 范围内的变形试验值 f_m 与 国内外规范计算值 f_{cal} 的比较结果见表 9 与图 8。

表 9 配置 600 MPa 钢筋混凝土梁变形试验值与不同规范计算值的比较结果 Tab.9 Co MParison experimental deformations with calculated values by different codes for beams with 600 MPa

	•				steel		·				
数据来源	数据点	GB 500	10-2010	SL 19	1-2008	JTG De	52-2012	ACI 3	18-14	EN199	92-1-1
	/n	μ	δ	μ	δ	μ	δ	μ	δ	μ	δ
600-C40-1-1	11	1.100	0.016	1.209	0.112	1.073	0.045	1.025	0.060	1.028	0.078
600-C40-1-2	10	1.088	0.036	1.143	0.108	1.047	0.039	0.993	0.049	0.987	0.068
600-C40-2-1	8	1.390	0.040	1.780	0.062	1.334	0.029	1.290	0.030	1.197	0.024
600-C40-2-2	11	1.192	0.078	1.449	0.084	1.148	0.075	1.107	0.069	0.995	0.025

600-C50-1-1	8	1.236	0.031	1.267	0.085	1.179	0.012	1.113	0.016	1.102	0.044
600-C50-1-2	10	1.253	0.046	1.298	0.066	1.197	0.028	1.132	0.022	1.124	0.030
600-C50-2-1	7	1.445	0.056	1.668	0.069	1.380	0.060	1.331	0.054	1.169	0.018
600-C50-2-2	6	1.402	0.039	1.667	0.053	1.332	0.037	1.290	0.036	1.153	0.021
600-C60-1-1	6	1.204	0.022	1.283	0.098	1.150	0.007	1.088	0.018	1.065	0.053
600-C60-1-2	8	1.182	0.038	1.280	0.087	1.134	0.017	1.075	0.012	1.056	0.042
600-C60-2-1	8	1.462	0.074	1.863	0.032	1.402	0.074	1.376	0.077	1.207	0.014
600-C60-2-2	6	1.197	0.064	1.442	0.112	1.160	0.087	1.130	0.073	0.956	0.055
总试件	99	1.250	0.112	1.426	0.181	1.200	0.108	1.213	0.175	1.082	0.086

由表 9 与图 8 可见,除 EN 1992 的计算精度 较好外(试验值与计算值比值的均值 μ =1.082,离 散系数 δ =0.086),其他各规范对于配置 600 MPa 钢 筋 的 试 验 梁 变 形 的 计 算 精 度 略 差 (μ =1.120-1.426, δ =0.108-0.181)。EN 1992 规范中 受力钢筋的屈服强度已达 600 MPa,因此 EN 1992 规范对于配置 600 MPa 钢筋混凝土梁的变形 计算具有一定借鉴意义。

图 8 配置 600 MPa 梁变形试验值与规范计算值的比较 Fig.8 Co MParison experimental values with calculated values by codes for deformation of beams with 600 MPa

- 4 变形计算的建议方法
- 4.1 建议方法1

GB 50010-2010规范基于平截面假定,建立

钢筋混凝土梁开裂后刚度Bs的解析计算模式为:

$$B_{\rm s} = \frac{E_{\rm s} A_{\rm s} h_0^2}{a \psi + b \alpha_{\rm F} \rho} \tag{3}$$

式中, E_s为钢筋弹性模量; A_s为纵向受拉钢筋面

积; h_0 为试件截面有效高度; ψ 为裂缝间纵向受拉 钢筋应变不均匀系数, ψ =1.1-0.65 $f_{tk}/(\rho_{te}\sigma_s)$, 其 中, f_{tk} 为混凝土抗拉强度标准值, ρ_{te} 为截面有效 配筋率, ρ_{te} =0.5bh; α_E 为钢筋与混凝土弹性模量 比; ρ 为试件截面配筋率; a、b为试验系数。

本文的内力臂系数取本次试验值 η =0.83,回 归分析确定梁短期刚度($E_sA_sh_0^2/B_s$)-1.2 ψ 与 $\alpha_{E}\rho$ 的 关系如图9。

图9 ($E_sA_sh_0^2/B_s$)-1.2 ψ 与 $\alpha_{E\rho}$ 的关系曲线 Fig. 9 Curve of ($E_sA_sh_0^2/B_s$)-1.2 ψ and $\alpha_{E\rho}$ 则可得到具体计算式为:

$$B_{\rm s} = \frac{E_{\rm s} A_{\rm s} h_0^2}{1.2\psi + 0.4 + 4.5\alpha_{\rm E}\rho} \tag{4}$$

4.2 建议方法 2

SL/T 191-2008 规范^[3]认为 $\alpha_{E\rho}$ 、 $E_{cbh_{0}}^{3}$ 为影响 截面刚度的主要因素,进而建立了半理论半经验 的计算模式。本文回归分析确定梁 $B_{s}/E_{s}A_{s}h_{0}^{3}$ 与 $\alpha_{E\rho}$ 的关系如图 10,进一步可得刚度计算式:

4.3 建议方法 3

JTG D62-2012、 EN1992-1-1: 2004、 ACI 318-14 规范的刚度计算考虑了开裂弯矩 *M*_{cr}的影响,最终的计算公式可归为双折线模式。文献[24] 基于弯矩与曲率关系提出了更为一般的钢筋混凝土受弯构件短期刚度的统一计算模式:

$$B_{\rm s} = \frac{B_0}{\left(\frac{M_{\rm cr}}{M}\right)^n + \left[1 - \left(\frac{M_{\rm cr}}{M}\right)^n\right]\frac{B_0}{B_{\rm cr}}} \tag{6}$$

式中, B_0 为全截面的抗弯刚度, $B_0=E_cI_0$, I_0 为全 截面换算截面惯性矩。对于参数 n, 通过大量试 算发现, 当 $n \ge 3$ 时计算结果较为接近; 为简化 计算,本文取 n=3。开裂截面的抗弯刚度 B_{cr} 与 配筋率 ρ 相关, 如图 11 所示, 通过本次试验实 测数据的回归分析可得:

因此,可得到适用于配置 600 MPa 高强钢筋的混凝土梁短期刚度计算公式:

$$B_{\rm s} = \frac{B_{\rm 0}}{\left(\frac{M_{\rm cr}}{M}\right)^3 + \left[1 - \left(\frac{M_{\rm cr}}{M}\right)^3\right] \left[\frac{0.72}{(\alpha_{\rm E}\rho)^{0.61}}\right]}$$
(8)

其中, *M*cr取本次试验开裂弯矩的实测值, 具体 取值见表10。

表 10 实测开裂荷载 Tab.10 Experimental cracking loads

		8	
试验梁编号	Mcr/KN m	试验梁编号	$M_{\rm cr}/~{ m KN}~{ m m}$
600-C30-1-1	17.06	600-C50-1-1	15.31
600-C30-1-2	17.06	600-C50-1-2	16.18
600-C30-2-1	15.31	600-C50-2-1	17.93
600-C30-2-2	14.43	600-C50-2-2	20.56
600-C40-1-1	18.81	600-C60-1-1	17.06
600-C40-1-2	17.06	600-C60-1-2	17.93
600-C40-2-1	16.18	600-C60-2-1	17.06
600-C40-2-2	14.43	600-C60-2-2	17.06

4.4 建议方法的适用性分析

4.4.1 纵向受力钢筋 335 MPa

配置 335 MPa 钢筋的试验梁,其开裂后正常使用阶段的变形试验值 *f*m 与本文建议模式计算值 *f*cal 的比较结果见表 11 与图 12。

由表 11 与图 12 可见, 三种建议方法对于配置 335 MPa 钢筋的试验梁变形的计算都具有较好的精度。

表 11 配置 335 MPa 梁变形试验值与建议方法计算值的比较结果

(5)

Tab.11 Co MParison test deformations with calculated values by proposed methods for beams with 335 MPa steel

Dars												
数据来源	数据点	建议	方法 1	建议	方法 2	建议	方法 3					
	/n	μ	δ	μ	δ	μ	δ					
课题组试验	132	1.012	0.142	0.821	0.173	0.923	0.239					
规范背景数据	96	0.929	0.128	0.877	0.163	0.951	0.266					
总试件	228	0.977	0.143	0.845	0.172	0.935	0.233					

图 12 配置 335 MPa 梁变形试验值与建议方法的比较 Fig.12 Co MParison experimental deformations with calculated values by proposed methods for 335 MPa beams

4.4.2 纵向受力钢筋 400 MPa

配置 400 MPa 钢筋的试验梁,其开裂后正常

使用阶段的变形试验值 f_m 与本文建议模式计算 值 f_{cal} 的比较结果见表 12 与图 13。

由表 12 与图 13 可见, 三种建议方法对于配置 400 MPa 钢筋的试验梁变形的计算都具有一定的精度。

表 12 配置 400 MPa 梁变形试验值与建议方法计算值的比较结果 ab 12 Co MParison tost deformations with coloulated values by proposed methods for beams with 400 MPa

图 13 配置 400 MPa 梁变形试验值与建议方法的比较 Fig.13 Co MParison experimental deformations with calculated values by proposed methods for 400 MPa beams

4.4.3 纵向受力钢筋 500 MPa

配置 500 MPa 钢筋的试验梁,其开裂后正常使用阶段的变形试验值 *f*m 与本文建议模式计算值 *f*cal 的比较结果见表 13 与图 14。

由表 13 与图 14 可见, 三种建议方法对于配置 500 MPa 钢筋的试验梁变形的计算都具有一定的精度。

表 13 配置 500 MPa 梁变形试验值与建议方法计算值的比较结果 Tab.13 Co MParison test deformations with calculated values by proposed methods for beams with 500 MPa steel

粉捉立酒	数据点	建议	方法 1	建议	方法 2	建议	方法3
致 拓木源	/n	μ	δ	μ	δ	μ	δ
文献 16	20	1.168	0.122	0.970	0.184	0.880	0.153
文献 17	22	1.125	0.141	1.015	0.195	0.967	0.155
文献 18	11	0.887	0.073	0.881	0.149	0.745	0.117
文献 19	3	1.160	0.036	1.077	0.027	0.923	0.037
文献 20	23	0.959	0.133	0.887	0.167	0.804	0.161
文献 21	10	1.125	0.141	1.015	0.195	0.967	0.155
文献 22	46	1.324	0.149	1.250	0.168	1.156	0.161
文献 23	12	0.944	0.124	0.851	0.187	0.841	0.160
总试件	147	1.122	0.200	1.030	0.230	0.949	0.223

图 14 配置 500 MPa 梁变形试验值与建议方法的比较 Fig.14 Co MParison experimental deformations with calculated values by proposed methods for 500 MPa beams

4.4.4 纵向受力钢筋 600 MPa

配置 600 MPa 钢筋的试验梁,其开裂后正常使用阶段的变形试验值 *f*m 与本文建议模式计算值 *f*cal 的比较结果见表 14 与图 15。

由表 14 与图 15 可见,三种建议方法对于 配置 600 MPa 钢筋的试验梁变形的计算都具有 较好的精度。

表 14 配置 600 MPa 梁变形试验值与建议方法计算值的比较结果

Tab.14 Co MParison test deformations with calculated values by proposed methods for beams with 600 MPa steel

粉捉亚湄	数据点	建议	方法 1	建议法	方法 2	建议法	方法 3
<u> </u>	/n	μ	δ	μ	δ	μ	δ

600-C40-1-1	11	0.955	0.026	0.898	0.112	0.909	0.072
600-C40-1-2	10	0.938	0.028	0.849	0.108	0.876	0.061
600-C40-2-1	8	1.148	0.021	1.181	0.062	1.139	0.013
600-C40-2-2	11	0.972	0.048	0.962	0.084	0.968	0.040
600-C50-1-1	8	1.063	0.017	0.941	0.085	0.980	0.026
600-C50-1-2	10	1.078	0.030	0.963	0.066	0.997	0.026
600-C50-2-1	7	1.169	0.032	1.107	0.069	1.147	0.032
600-C50-2-2	6	1.142	0.024	1.106	0.053	1.114	0.018
600-C60-1-1	6	1.025	0.007	0.929	0.098	0.962	0.034
600-C60-1-2	8	1.009	0.021	0.927	0.087	0.953	0.023
600-C60-2-1	8	1.184	0.054	1.201	0.032	1.193	0.047
600-C60-2-2	6	0.957	0.039	0.937	0.112	0.975	0.066
总试件	99	1.046	0.089	0.992	0.140	1.008	0.107

图 15 配置 600 MPa 梁变形试验值与建议方法的比较 Fig.15 Co MParison experimental deformations with calculated values by proposed methods for 600 MPa beams

5 结论

本文进行了配置 600 MPa 高强钢筋和不同强 度混凝土的受弯梁的变形试验研究,并结合现有 配置 335 MPa~500 MPa 钢筋的混凝土梁实测变 形数据分析(共计 549 个数据),建立了适用于配 置 335 MPa~600 MPa 钢筋的混凝土梁变形的计 算修正方法。研究得到如下结论:

(1)通过试验确定出配置 600 MPa 级高强 钢筋的混凝土梁正常使用阶段各级荷载下的截面

高度方向混凝土应变变化情况; 捕捉到部分梁 裂缝截面处的纵向受力钢筋应变的变化情况; 得到了各试件荷载—变形全过程曲线等。

配置 600 MPa 级高强钢筋的混凝土梁的应 变变化符合平截面假定;荷载一变形全曲线为 典型的三折线变化。裂缝截面实测内力臂系数 最大值为 0.93,最小值为 0.73,平均值为 0.83。

(2)对现有规范钢筋混凝土梁的变形计算 方法进行的适用性分析发现:现有规范主要适 用于纵向受力钢筋为 335 MPa~400 MPa 的梁 变形计算。而对于纵向受力钢筋为 500 MPa,特 别是 600 MPa 的混凝土受弯梁,除 EN 1992 的 计算精度较好外,其他现有规范的计算方法精 度略差,须进行进一步的修正。

(3)基于解析刚度法、半理论半经验法、 考虑开裂弯矩影响的双折线法等三种钢筋混凝 土梁开裂后变形的计算模式,本文相应地建立 了适应于配置 335 MPa~600 MPa 高强钢筋的 混凝土梁变形计算的三种模式的具体表达式。

与现有规范计算方法相比,本文建议的钢筋混凝土开裂后的变形计算方法,对于配置 335 MPa~400 MPa 钢筋的混凝土梁,其计算精 度基本保持与现有规范的计算精度一致;而对 于配置 500 MPa~600 MPa 高强钢筋的混凝土 梁变形的计算,其精度有所提高。因此,所提 计算方法适用于目前配置高强钢筋的混凝土梁 的设计应用与受力评估。

参考文献:

References:

- JTG D62-2012. 公路钢筋混凝土及预应力混凝土 桥涵设计规范[S]. 北京:人民交通出版社, 2012.
 JTG D62-2012. Code for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts [S]. Beijing: China Communication Press, 2012. (in Chinese)
- [2] TB10002.3-2005. 铁路桥涵钢筋混凝土和预应力

混凝土结构设计规范[S]. 北京:中国铁道出版社, 2005.

TB10002.3-2005 . Code for Design of Railroad Reinforced Concrete and Prestressed Concrete Bridges and Culverts [S]. Beijing: China Railway Press, 2005. (in Chinese)

- [3] GB50010-2010. 混凝土结构设计规范[S]. 北京:中国 建筑工业出版社, 2010.
 GB50010-2010. Code for Design of Concrete Structures [S]. Beijing: China Building Industry Press, 2010. (in Chinese)
- [4] DL/T 5057-2009. 水工混凝土结构设计规范[S].北京:中国电力出版社, 2010.

DL/T 5057-2009. Design specification for hydraulic concrete structures [S]. Beijing: China Electric Power Press, 2010. (in Chinese)

- [5] SL/T 191-2008. 水工混凝土结构设计规范[S].北京: 中国水利水电出版社, 2009.
 SL/T 191-2008. Design Code for Hydraulic Concrete Structures [S]. Beijing: China Water Power Press, 2009. (in Chinese)
- [6] JTJ267-98. 港口工程混凝土结构设计规范[S].北京: 人民交通出版社, 1998.

JTJ267-98. Design Code for Harbour Engineering Concrete Structures[S].Beijing: China Communication Press,1998. (in Chinese)

[7] 管俊峰,张谦,王丹,等. 600MPa级新型抗震钢筋 受力特性与本构模型研究[J].应用基础与工程科学 学报, 2018, 26(1): 122-131.

GUAN Junfeng, Zhang Qian, Wang Dan, et al. Research on Mechanical Properties and Constitutive Model of 600MPa Seismic Steel Bar [J]. Journal of Basic Science and Engineering, 2018, 26(1): 122-131.

[8] 管俊峰,张谦,王伟凤,等. 600 MPa 级新型高强抗
 震钢筋的混凝土梁抗裂性能研究[J].混凝土, 2016,
 (7):49-52.

GUAN Junfeng, Zhang Qian, Wang Weisu, et al. Resistance against cracking of reinforced concrete beams with 600MPa seismic steel bar [J]. Concrete, 2016, (7):49-52.

[9] 兰宗建. 钢筋混凝土受弯构件挠度试验数据[C]//见: 中国建筑科学研究院编.钢筋混凝土构件试验数据 集.北京:中国建筑科学研究院,1985: 127-135.

LAN Zong-jian. Test data of deformation for reinforced concrete flexural members [C] // In: China Academy of Building Research. Test data of reinforced concrete members. Beijing: China Academy of Building Research, 1985:127-135. (in Chinese)

- [10] 管俊峰,赵顺波,李晓克,等. 钢筋混凝土梁裂 缝宽度试验与计算方法研究[J]. 中国公路学报, 2011, 24(5):74-81+88.
 GUAN Jun-feng, ZHAO Shun-bo, LI Xiao-ke, et al. Experiment and calculation method of crack width of reinforced concrete beams[J]. China Journal of
- [11] ACI Committee 318. Building code requirement for structural concrete (ACI 318-14) and commentary (ACI 318R-14) [S]. Detroit: American Concrete Institute, 2014.

Highway and Transport, 2011, 24(5):74-81+88.

- [12] EN1992-1-1. Euro-code2: Design for concrete structures- Part1: General rules and rules for building[S]. London: European Committee for Standardization, 2004.
- [13] 李美云. HRB400 级钢筋混凝土构件受力性能的 试验研究[D]. 郑州:郑州大学, 2003.

LI Mei-yun. The study of mechanical property of HRB400 reinforced concrete members [D]. Zhengzhou: Zhengzhou University, 2003. (in Chinese)

[14] 那丽岩. HRB400 级钢筋混凝土构件受弯性能试验研究[D]. 湖南:湖南大学, 2006.

NA Li-yan. The experimental study on the crack behavior of concrete bending members reinforced with HRB400 steel [D]. Hunan: Hunan University , 2006. (in Chinese)

- [15] 肖红菊. HRB400 级钢筋混凝土梁抗弯性能试验 研究[D]. 郑州:郑州大学, 2006.
 XIAO Hong-ju. Experimental research on bend behavior of HRB400 reinforced concrete beams [D].
 Zhengzhou: Zhengzhou University, 2006. (in Chinese)
- [16] 张鹏. 500MPa 钢筋混凝土梁受弯性能试验研究
 [D]. 天津:河北工业大学, 2007.
 ZHANG Peng. The experimental study on bending behavior of RC beams with 500MPa steel bar [D].
 Tianjin: Hebei University of Technology, 2007. (in Chinese)
- [17] 张艇. HRB500 级钢筋混凝土构件受力性能的试验研究[D]. 郑州:郑州大学, 2004.
 ZHANG Ting. The study of mechanical property of HRB500 reinforced concrete members [D].
 Zhengzhou: Zhengzhou University, 2004. (in

Chinese)

- [18] 尚士忠. 配高强钢筋混凝土梁的受弯性能试验研究
 [D]. 上海:同济大学, 2007.
 SHANG Sing-zhong. Experimental research on flexural performance of concrete beam reinfored with high-strength rebars [D]. Shanghai: Shanghai University, 2007. (in Chinese)
- [19] 王全凤,刘凤谊,杨勇新,等. HRB 500 级钢筋混凝
 土简支梁受弯试验[J]. 华侨大学学报, 2007, 28(3):300-303.

WANG Feng-quan, LIU Feng-yi, YANG Yong-xin, et al. Experiment investigation on flexural behavior of simple supported RC beams with grade HRB 500 reinforcement [J]. Journal of Huaqiao University, 2007, 28(3):300-303.

- [20] 李艳艳. 配置 500 MPa 钢筋的混凝土梁受力性能的 试验研究[D]. 天津:天津大学, 2007.
 LI Yan-yan. Experimental research on behaviors of reinforced concrete beams with 500 MPa steel bars [D]. Tianjin: Tianjin University, 2007. (in Chinese).
- [21] 刘平. 配置 HRB 500 钢筋混凝土梁的试验及理论研究[D]. 天津:河北工业大学, 2012.
 LIU Ping. Experimental and Theoretical research on beams with HRB 500 high strength steel bars. [D]. Tianjin: Hebei University of Technology, 2012. (in Chinese)
- [22] 徐风波. HRB 500 级钢筋混凝土梁正截面受力性能 试验及理论研究[D]. 湖南:湖南大学, 2007.
 XU Feng-bo. Experimental and theoretical research on flexural behavior of reinforced concrete beams with HRB 500 bars [D]. Hunan: Hunan University, 2007. (in Chinese)
- [23] 陆春华,金伟良,延永东.正常使用状态下 HRB 500
 钢筋混凝土梁受弯性能试验[J]. 江苏大学学报,2011,32(3):350-354.
 LU Chun-hua, JIN Wei-liang, YAN Yong-dong.

Experiment for flexural behavior of HRB 500 rebar reinforced concrete beam under serviceability state [J]. Journal of Jiangsu University, 2011, 32(3):350-354.

[24] 白生翔, 王晓锋. 混凝土受弯构件短期弯曲刚度统 一模式[C]//见: 第十四届全国混凝土及预应力混凝 土学术会议论文.长沙: 中国土木工程学会, 2007:312-318.

BAI Sheng-xiang, WANG Xiao-feng. A unified model for short-term flexural stiffness of concrete bending members [C]//The 14th national concrete and prestressed concrete conference. Changsha: China Civil Engineering Society, 2007:312-318. (in Chinese)